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Fully-supervised CNN-based approaches for learning local image To address the challenges, we propose a system shown in Fig. 2. All components are o | |
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descriptors  require  per-pixel  ground-truth  keypoint self-supervised and do not require human or costly machine guided labelling. 1.0

correspondence data which is difficult to acquire at scale. In this
work, we focus on understanding the limitations of existing self-
supervised approaches and propose a set of improvements that
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2. Global mining has been accessible only to global | Q M | [94.29,86.57,78.43] [95.71, 89.71, 83.29]
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representation learning methods. Local mining
cost grows exponentially with dataset size. Since
global descriptors are functions of local Figure 2: Proposed self-supervised local descriptor learning system
descriptors, can local mining across the dataset
be approximated with global mining?
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We use both in-pair and in-batch mining. The number of positives and

negatives is balanced by selecting onIy the tOp-k negatives in terms of cosine Table 1: (Up) Results show superior performance of in-batch over in-pair negative mining. (Bottom) Self-
supervised methods perform at par with supervised counterparts on Aachen vislocalization benchmark
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